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Abstract—In this paper, the use of a Moving Horizon Estimator
(MHE) is investigated to address a class of state estimation
problems dealing with multi-rate sensor fusion in presence of
time-delayed measurements. As it makes use of a batch of past
measurement and state estimates, MHE is indeed a good candidate
to deal with ”missing” measurements. Nevertheless, since Moving
Horizon Estimation relies on solving online an optimization
problem to compute the state estimate, its computational load
may be prohibitive for practical implementation to fast dynamical
systems. Therefore this paper proposes a computationaly efficient
implementation scheme for a variable structure linear MHE deal-
ing with multi-rate time-delayed measurements, in the case where
an analytical solution of the underlying optimization problem can
be found. A simulation example is considered for performance
comparison of the proposed MHE with respect to several state-
of-the-art estimators, in terms of accuracy and computation time.

Keywords—Robotics, Linear Systems, Signal Processing

I. INTRODUCTION

A. Considered problem

Multi-sensor fusion is a widely used approach for state esti-
mation problems. The localization problem of a robot or a drone
can for example be addressed by fusing measurements provided
by embedded sensors and/or information reconstructed from
these measurements. In some cases, the computation time
associated to this reconstruction can not be neglected and will
result in some time delay between the availability instant of the
reconstructed information and the acquisition time associated
to the corresponding measurement. This is more specifically
the case for multi-rate sensor fusion problems where ”time
consuming” algorithms (e.g. computer vision) are used online
to provide some information to be fused with high rate sensor
measurements (e.g. IMU). In addition, acquisition delays may
occur when the physical phenomenon to be measured is not
instantaneously observable. Delays due to communications may
also appear, especially in the case of sensor networks or multi-
robot systems where information are transmitted between nodes
or vehicles. In all these cases, the presence of time delays may
degrade the stability of the estimation error or the accuracy of
the state estimate.

B. Related work

The problem of state estimation with time delayed measure-
ments is often referred to as a ”negative time measurement

update problem” (see [1]) since state estimation of the current
state involves past measurements. Different classes of problems
can be considered depending on whether delayed measurements
come in-sequence or out-of-sequence (see [2]) and whether
the measurement delays are known or not. It is the case if
measurements are time-stamped, as considered in this paper.
Otherwise, the estimation should rely on some probabilistic
characterizations of the delays (see [3], [4], [5], [6]). To deal
with delayed measurements, some methods are based on the
use of predictors to compensate for the delay (see [7], [8],
[9]). Another approaches rely on computing an update in the
correction term to be applied to the current state estimate
(see [10], [2]). A third class of approaches makes use of the
delayed measurement in its past context to re-estimate the
whole sequence of posterior state estimates (see [6], [11], [12],
[13]).

To cope with the (un) availability of several measurements,
a buffer can be used to store a finite number of past infor-
mation (measurements, state estimates). This is in particular
the case of Moving Horizon Estimators (MHE) which rely on
the resolution of an optimization problem that makes use of
measurements over a finite past horizon of time. Although there
exist a lot of works in the literature that consider fast MHE
algorithms, by ad-hoc optimization procedures (see [14], [15],
[16]) or by an adequate formulation of the optimization problem
to be solved (see [17]), there exist very few work focusing
simultaneously on computational load reduction and multi-
rate sensor fusion in presence of time-delayed measurements
with this type of estimators. In [18] a variable structure MHE
is proposed to cope with time-delayed measurements. Never-
theless implementation to fast dynamical systems and multi-
rate measurements are not considered. In [19] a regularization
scheme is designed along with a specific cost function in the
MHE formulation to adapt the weight associated to missing
data, enabling to handle time delays. Computational time is
experimentally investigated but in the case of single rate mea-
surements. In [12], an MHE is implemented to fuse IMU and
GPS measurements for state estimation of a fixed-wing aircraft.
Multiple rates are handled by resampling GPS measurements
to the IMU rate. In [20], additional measurements from a pitot-
static tube are included in the fusion problem to also estimate
wind velocity and aerodynamic coefficients. Nevertheless, in
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these last two works, on-line implementation is not really
addressed nor possible time-delays in measurements.

C. Contributions

In this paper, we investigate the use of a Moving Horizon
Estimator for multi-rate sensor fusion with time-delays. Based
on the approach initially proposed in [18] to deal with time
delays, a variable structure MHE is used here to both handle
multi-rates and time delays. The linear case is addressed in this
work to obtain an analytical formulation that is computationally
tractable and can easily be applied in real time to fast dynamical
systems. To further improve the computation time, a procedure
is proposed to perform off-line pre-computations as much as
possible and only update online some specific terms that are
related to the (un)availability of the measurements over the
finite horizon of the MHE.

The rest of the paper is organized as follows. In Section
II the problem of interest is defined to which an analytical
solution is then derived in Section III. Section IV proposes a
procedure to improve computation time. Performance of the
proposed MHE is then evaluated in Section V by considering
a simple benchmark example and by analyzing accuracy of the
estimates and computation time wrt to some state-of-the-art
estimators. Concluding remarks are finally proposed in the last
section of the paper.

II. PROBLEM STATEMENT

A. Moving Horizon Estimators

Consider a general discrete-time dynamic system

xk = f(xk−1,uk−1) +wk−1 (1)

and measurement equation

zk = h(xk) + νk (2)

where xk ∈ Rn is the state of the system, uk ∈ Rm its
input, zk ∈ Rp the vector of measurements at time index
k. The process noise wk ∈ Rn and the measurement noise
νk ∈ Rp are assumed to be zero mean white Gaussian noises
of covariance matrices Qk and Rk. Let N be the length of a
finite horizon over which the sequences of the system inputs
uk−1

k−N = {uk−N, ...,uk−1} and the available measurements
zk

k−N = {zk−N, . . . ,zk} are assumed to be known. Moving
Horizon Estimation consists in computing at time index k the
state estimate x̂k ∈ Rn by solving the optimization problem

{ x̂k−N

ŵk−1
k−N

} = argmin
xk−N
wk−1

k−N

∥xk−N − x̄k−N∣k∥
2

P−1
k−N∣k

+
N−1
∑
i=0

∥wk−N+i∥
2

Q−1
k−N+i

+
N

∑
i=0

∥zk−N+i − ẑk−N+i∥
2

R−1
k−N+i

(3)

where wk−1
k−N = {wk−N, ...,wk−1} is the sequence of process

noises, xk−N is the horizon front state, ẑk−N+i = h○fwk−N−1+i
uk−N−1+i ○

⋯ ○ fwk−N
uk−N (xk−N) with fw

u (x) = f(x,u) + w, and Pk−N∣k
the recursively estimated covariance matrix of xk−N∣k. After

the optimization is carried out, the prior on xk−N on x̄k−N is
propagated through the dynamical model :

x̄k+1−N∣k−N = f(x̂k−N,uk−N) + ŵk−N (4)

The covariance can be propagated e.g. by using the Extended
Kalman Filter’s (EKF) covariance prediction and update for-
mulas. The current state estimate is computed as :

x̂k = f ŵk−1
uk−1 ○ ⋯ ○ f ŵk−N

uk−N (x̂k−N) (5)

B. Particular forms of the MHE problem

1) MHE with variable structure: As specified in the
introduction and introduced in [18], an efficient MHE needs its
structure to be variable in order to correctly handle two facts.
On one hand, the observation system may be multi-rate, so the
MHE needs to integrate measurements acquired at different
frequencies. On the other hand, some measurements may be
delayed, and so they should be replaced in their context when
received.

2) MHE estimation with and without process noise: An
approximate form of the MHE can be derived by estimating
only xk−N and omitting the sequence of process noises wk−1

k−N.
This solution compensates a loss of accuracy for lighter com-
putational load, since the sequence of process noises is the
heaviest part of the estimated vector.

III. ANALYTICAL SOLUTIONS IN THE LINEAR CASE

A. Discrete LTI system

In the rest of this paper, a linear system as follows will be
considered :

xk = Axk−1 +Buk−1 +Mwk (6a)
zk = Cxk + νk (6b)

where wk and νk are white Gaussian noises whose covariance
matrices are respectively Qk and Rk. uk is the control input
at time step k. zk is the measurement vector associated with
state xk, but it may be received at time step l ≥ k.

B. Derivation of the closed-form solution

In the linear form, the measurement prediction function as
well as the dynamical constraints are linear. The optimization
problem’s cost function, explicitely expressed as a function of
xk−N and wk−1

k−N, is convex and thus has a unique solution
which can be computed analytically by zeroing its gradient.

1) Closed-form for measurement predictions: Let ẑk
k−N,

uk−1
k−N and wk−1

k−N be the stacked vectors of the sequence of
predicted measurements, control inputs and process noises over
the horizon. One easily shows that

ẑk
k−N = MX.xk−N +MW.wk−1

k−N +MU.u
k−1
k−N (7)

where the following matrices are defined as follows :

MX = [(CAN)
T

⋯ (CA1)T (CA0)T ]
T

(8a)
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MW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA0M CA1M ⋯ CAN−1M
⋮ CA0M ⋯ CAN−2M
⋮ ⋱ ⋮
⋮ CA1M
⋮ CA0M
0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8b)

MU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA0B CA1B ⋯ CAN−1B
⋮ CA0B ⋯ CAN−2B
⋮ ⋱ ⋮
⋮ CA1B
⋮ CA0B
0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8c)

with 0 being zero matrices of appropriate dimensions.

2) Closed-form for the cost function: By injecting (7) into
the cost function expression, and by considering the matrices

Rk = diag (Rk,⋯,Rk−N) (9a)
Qk = diag (Qk−1,⋯,Qk−N) (9b)

the cost function Jk can be rewritten

Jk = ∥zk
k−N − ẑk

k−N∥2R−1
k

+ ∥wk−1
k−N∥2Q−1

k

+ ∥xk−N∣k − x̄k−N∣k∥
2

P−1
k−N

(10)

which yields

Jk = [xk−N

wk−1
k−N

]
T

[QXX QXW

QT
XW QWW

] [xk−N

wk−1
k−N

]

+ 2([LXU

LWU
]uk−1

k−N − [LXZ

LWZ
]zk−1

k

− [LXX

LWX
] x̄k−N∣k)

T

[xk−N

wk−1
k−N

] (11)

with the following matrices being defined as follows :

QXX = MT
XRkMX +Pk−N QXW = MT

XRkMW

QWW = MT
WRkMW +Qk LXU = MT

XRkMU

LWU = MT
WRkMU LXZ = MT

XRk

LWZ = MT
WRk LXX = Pk−N

LWX = 0

(12)

3) Zeroing the gradient: The sufficient and necessary con-
ditions for optimality yield :

[QXX QXW

QT
XW QWW

] [xk−N

wk−1
k−N

]

= [LXZ

LWZ
]zk

k−N − [LXU

LWU
]uk−1

k−N + [LXX

0
] x̄k−N∣k (13)

The current estimate is then computed using

x̂k∣k = ANx̂k−N∣k + [B AB ⋯ AN−1B]uk−1
k−N

+ [M AM ⋯ AN−1M] ŵk−1
k−N (14)

which is the linear form of equation (5). Note that solving the
MHE problem without process noises merely shrinks to solving
the following linear system for xk−N :

QXX.xk−N = LXZ.z
k
k−N

−LXU.u
k−1
k−N +LXX.x̄k−N∣k (15)

IV. IMPLEMENTATION

The implementation of the MHE should take into account
the variability of the problem formulation from one time step
to another because of the unavailability of some measurements.
Impacting the unavailability of measurement zk−N+i boils down
to ignore every matrix term in equation (13) which relates to
it. This is equivalent to ignore every matrix block in which one
the weighting matrix Rk−N+i does appear. Indeed, one remarks
that every matrix defined in (12) breaks down into a sum of
”elementary” matrices which should be selected according to
available measurements at time step k. Furthermore, all those
elementary matrices can be pre-computed off-line. Therefore,
the proposed implementation involves building the matrices of
the system (13) at each time step by adding those pre-computed
matrix terms according to available measurements.

A. Matrices used in the problem formulation

Each of the matrix block defined in equation (12) is analyzed
so as to be split into a sum of matrix terms to highlight
its relation to the availability of measurements over the hori-
zon. Matrices issued from such a decomposition should then
be handled in appropriate structures to be used at proper
moments. The contributions of each measurement to the the
block matrices defined in equation (12) appear explicitly in the
decomposition of those matrices given below :

MXX = Pk−N +
N

∑
i=0

(CAN−i)TRk−i(CAN−i) (16a)

MXW =
N−1
∑
i=0

(CAi)
T
Rk−i(MW)(i∶) (16b)

MWW = Qk +
N−1
∑
i=0

((MW)(i∶))
T
Rk−i(MW)(i∶) (16c)

LXU =
N

∑
i=0

((MX)(i∶))
T
Rk−i(MU)(i∶) (16d)

LWU =
N−1
∑
i=0

((MW)(i∶))
T
Rk−i(MU)(i∶) (16e)

LXZ =
N

∑
i=0

(CAi)
T
Rk−i (16f)

LWZ =
N

∑
i=0

((MW)(i∶))
T
Rk−i (16g)

where the subscripts ⋅(i∶) refer to the ith block line of the
subscripted block matrices. All the summands can be pre-
computed and arranged into properly indexed grids, so that to
be added to the corresponding block matrix to build the system
(13) when their associated measurement is available within
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Moving Horizon

zkzk−1zk−2zk−N+1zk−Nzk−N−1

Unavailable
measurementsPre-computed

matrix blocks Available measurements

[M
T
XRkMX +Pk−N MT

XRkMW

MT
WRkMX MT

WRkMW +Qk
] [

xk−N∣k
w

k−1∣k
k−N∣k

]

= [MT
XRk

MT
WRk

]zk
k−N − [MT

XRkMU

MT
WRkMU

]uk−1
k−N + [Pk−N

0
] x̄k−N∣k

Building of the necessary condition linear system by adding
the summands associated with available measurements only

Solving via Cholesky factorization

Fig. 1: Implementation scheme of the linear moving horizon estimator from
the closed-form solution of the optimization problem

the horizon. Note that for the matrices MXW, MWW and
LWU, no matrix block is associated to the measurement zk−N.
At each time-step, matrices MXX and MWW are initialized
respectively at Pk−N and Qk.

B. Proposed procedure for computation time improvement

The proposed procedure is illustrated in Figure 1. It relies
on expressing the MHE problem by shaping directly the linear
system characterizing its solutions. As previously mentioned, in
the block matrices of the linear equation (13), the contributions
of each measurement within the horizon is identified and ex-
tracted. This allows to build the linear system characterizing the
solution of the MHE problem which is exactly adapted to the
set of available measurements over the horizon, and then take
advantage of the closed-form the solution to efficiently compute
the estimates of xk−N and wk−1

k−N via Cholesky decomposition,
and then x̂k from (14).

V. PERFORMANCE EVALUATION

A. Considered study case

As a study case, a simplified model of the translational
dynamics of a drone is considered:

ẋ = v (17a)
v̇ = a (17b)

where x is the position of the drone, v its velocity, and a its
acceleration. Measurements are obtained by an accelerometer
and a visual odometry algorithm, which are simply modeled as
follows

am = a + ab + aη (18)
pm = p + pη (19)

am is the acceleration measured by the accelerometer1 and
pm is the position measured by the odometer ; ab is the
accelerometer bias, and aη and pη are white Gaussian noises

1Note that measurement from a strapped-down accelerometer is usually
provided in a body-frame and position measurement from visual odometry
in a global referene frame. For simplicity reasons, it is assumed here that
acceleration measurements are directly provided in the global reference frame.

whose covariance matrices are respectively Racc and Rodo.
The estimation model is obtained via Euler integration at
sampling period Te:

pk = pk−1 + Te ⋅ vk−1 (20a)

vk = vk−1 + Te ⋅ (amk−1 − abk−1 − aηk−1) (20b)

Defining xk = [pT
k vT

k ab
T
k ]T, the estimation model can

be written as

xk = Axk−1 +Buk−1 +Mwk−1 (21)

with the following matrices

A =
⎡⎢⎢⎢⎢⎢⎣

I3×3 Te ⋅ I3×3 03×3

03×3 I3×3 03×3

03×3 03×3 I3×3

⎤⎥⎥⎥⎥⎥⎦
(22a)

B =
⎡⎢⎢⎢⎢⎢⎣

03×3

Te ⋅ I3×3

03×3

⎤⎥⎥⎥⎥⎥⎦
M =

⎡⎢⎢⎢⎢⎢⎣

03×3

I3×3

03×3

⎤⎥⎥⎥⎥⎥⎦
(22b)

and considering the accelerometer measurement as input, uk =
am, which is assumed to be available at each time step.
The process noise wk has a covariance matrix T 2

eRacc. The
measurement equation is:

zk = Cxk + νk (23)

with C = [I3×3 03×3 03×3], and νk the measurement noise
of covariance matrix Rodo. Numerical values of process and
measurement noise covariances, sensor rates and sampling
period can be found in Table I.
The position measurement from visual odometry is supposed to
be affected by delays, because of the time needed to process the
acquired image, which commonly involves extracting feature
points from the images and matching them with features
extracted from previous images in order to estimate the relative
homogeneous transformations between the successive frames.2

B. Comparison filters

The proposed approach is evaluated against other filters
which are similar to the MHE in the sense they also replace
the delayed measurements in their context and re-estimate the
sequence up to the current estimate. Performance evaluation
of the proposed MHE, without process noises (denoted MHE)
and with process noise (denoted MHEN), are carried against
a classical Kalman Filter (KF), a Circular Iterated Extended
Kalman Filter (CIEKF) proposed in [11], an Augmented State
Kalman Filter (ASKF) described in [13] and [6] and a Receding
Horizon Kalman Filter (RHKF) described in [21]. The main
characteristics of the last three filters are summed up as

● CIEKF : given a delayed measurement, it re-estimates the

2Here, for the sake of simplicity, multi rates are only considered between
the input and the measurement vectors of the system. Multi rates between two
contributions to the components of the measurement vector could have also
been considered, e.g. adding a GPS position measurement with its own rate,
with few changes to the approach.
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whole sequence of states in between the state correspond-
ing to the measurement and the current one.

● RHKF : it shows the same architecture as a classical KF
but augments its state vector to include states over a finite
past time horizon. Its augmented state dynamics involves
predicting the whole sequence of states at each timestep.

● ASKF : it is quite similar to the RHKF, except that its
augmented dynamics only involves translating all the states
but the front state which is predicted.

C. Estimation accuracy and computation time

The metric used to evaluate the accuracy of a given filter F ∈
{KF,MHE,MHEN,CIEKF,RHKF,ASKF} is the Root Mean
Squared Error (RMSE) of the estimate, defined as

RMSEF(T ) =

¿
ÁÁÀ T

∑
i=0

∥x̂i − xi∥
2

(24)

where {xi}i=0,...,T and {x̂i}i=0,...,T respectively stand for the
sequence of states and estimates over the time window [0, T ].
In order to compare the performance of the filters against a
same reference, chosen as the Kalman Filter with the same
delay assumption on measurements, the ratio

ρF(T ) = log10 (
RMSEF(T )
RMSKF(T )

) (25)

is defined for any given filter F . If the ratio ρF is negative, then
the filter F is more accurate than the classical KF. If ρFi < ρFj ,
then the filter Fi is more accurate than the filter Fj . Another
performance index considered for each filter is the computation
time which is analyzed by computing the log10 of the mean
number of iterations per second of the filter over the whole
duration of the simulated trajectory.

D. Simulation results

First, a reference trajectory consisting in an ascending helix
is simulated over T = 100s for the drone along with the
corresponding sensor measurements using parameter values
given in Table I. Several simulations have been performed for
different values of the delay δ affecting the position measure-
ment provided by visual odometry, from 0s (no delay) up to
1s, by 50ms increments. For each value of the measurement
delay δ, all the filters are also tested for different values of
the horizon length N . Figure 2 presents a selection of the
obtained simulated results. The ratio ρF is plotted for each
filter F with respect to δ, and for different values of N . Only
the position component of the state is considered in the RMSE
computations for simplicity of analysis, but similar results are
obtained when also considering the velocity and accelerometer
bias components of the state.
Figures 2a, 2b, 2c, 2d and 2e show the evolution of ρF
respectively for the CIEKF, ASKF, RHKF, MHE and MHEN
filters. MHE and MHEN have been tested with the proposed
implementation. The CIEKF, ASKF and RHKF all demonstrate
a better accuracy than the Kalman Filter regarding position
RMSE, with an average ρF ratio close to -1.5. For these

Quantity Notation and Value
Integration step Te = 0.01 s
IMU frequency fIMU = 100 Hz
Visual odometer frequency fODO = 10 Hz
Accelerometer covariance Racc = (1e−3)2I3×3 m2s-4

Accelerometer bias ab = 1e−21 m.s-2

Visual odometer covariance Rodo = (1e−3)2I3×3 m2

Simulation time horizon T = 100 s

TABLE I: Main simulation parameters

three filters, the results are quite similar whatever the value
of N . Both MHE and MHEN also show better accuracy than
the Kalman Filter, despite a sudden decrease of performance
when the measurement delay δ becomes comparable to the time
horizon N.Te. MHEN proves to be the most accurate of all the
tested filters, with values for the ρF ratio down to -2.9.
Some elements of interest for computation time analysis are

Filter F Imin Imax Nmax
RT δmax

RT Nδmax
RT

CIEKF 3.9 4.6 ∀N ∀δ ×
ASKF 0.6 2.2 20 0.15s 20
RHKF 1 3 30 0.35s 40
MHE 2.47 2.58 ∀N ∀δ ×

MHEN 1.8 2.3 70 0.75s 80

TABLE II: Computation time analysis

presented in Table II. For each tested filter, the minimum and
maximum values, respectively denoted by Imin and Imax,
of the log10 of the mean number of iterations per second
is presented. They are computed over the set of all tested
values for (N, δ). In order to assess real time feasibility, in
the sense that computation time is lower than the sampling
period Te, two other performance indexes are introduced. The
maximum possible value of N for which real time is possible
∀δ values tested is denoted Nmax

RT . The maximum possible
value of δ that can be handled such that there exists a value
for N ensuring real time capability is denoted δmaxRT . The
corresponding value of N is denoted Nδmax

RT
. These results

illustrate that the proposed MHE implementation is compatible
with real time requirements.

VI. CONCLUSION

The contributions of this work are twofold. First, based on
the work of [18], a variable structure MHE has been proposed
for state estimation of LTI systems when dealing both with
time-delayed measurements and multi-rate sensors. Second,
a computationally efficient implementation scheme has been
proposed enabling to perform offline pre-computations as much
as possible. Performance analysis has been carried out in terms
of estimate accuracy and computation time by comparing the
considered MHE strategy to some other filters of the literature
also meant to handle time delays. For that purpose, a simple
simulation example has been considered. The results showed
that it is possible to achieve better estimation accuracy with
the MHE and that the proposed implementation allows real-
time implementation to fast dynamical systems.
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(d) ρF ratio related to position for MHE
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(e) ρF ratio related to position for MHEN
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Fig. 2: Simulation results for accuracy analysis of the different filters
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